
MS Excel Spreadsheet Validation

www.OfniSystems.com
info@OfniSystems.com

808 Salem Woods Dr. Suite 103
Raleigh NC 27615-3345

Office: 919.844.2494
FAX: 919.869.1990

Overview
This article will present a simple method for validating MS Excel
spreadsheets for GxP use. The goal of our validation strategy is to
improve testing for individual spreadsheets in less time. This is
accomplished by creating a common methodology for gathering
and documenting spreadsheet requirements, then demonstrating
that the spreadsheet meets those defined requirements. Once
the methodology is established, it can rapidly be applied to many
spreadsheets.

Scope
This article covers common examples of spreadsheet validation
activities. Some special or complicated examples are addressed,
but it should be understood that special cases not explicitly
discussed can be added as needed to fit your existing validation
requirements. A good example is any spreadsheet that uses or is
used with custom automation. We have validated spreadsheets
that contained hundreds of formulas and custom macros, but did
not require any user intervention at all because they were created,
populated with data and saved entirely by external code. In this
case, the focus of the validation was on validating formulas and
macros, but security testing was limited to proving that users
could not intercept or interrupt the operation at any time.

Assumptions
We do not make assumptions about your existing SDLC (Software
Development Life Cycle); all material presented here can be
adapted to meet your existing standards and practices.

We do assume the spreadsheet requiring validation has already
been created, as this is our most common scenario.

Approach
The basics of our validation approach are applicable to almost all
spreadsheets:

• Define basic documentation practices and methodology in a
single document, the Spreadsheet Validation Master Plan.
This document can be referred to for all individual
spreadsheet validation projects, and does not need to be
reviewed or approved for each validation effort.

• For each workbook, define the requirements for each
worksheet or chart in the workbook, then verify that these
requirements have been properly implemented.

• Emphasis is on defining and testing formulas, and also on the
security for each sheet by limiting the parts of each sheet that
the users are allowed to edit.

Methodology
To keep things simple, we define how we enter information into
the requirements and design specification documents, then
describe how we go about testing the spreadsheet in the test
protocols. Input cells may be defined as one single cell or as a
range of cells.

Requirements Specification
This document includes all the requirements that your
spreadsheet must accomplish. This document should be kept
simple and relatively non-technical so that anyone who reads the
document will understand the requirements.

Start with a common validation template:

• Identify and list all worksheets and charts in the workbook.

• Describe any enforced workflows.

• Document how the spreadsheet meets the requirements of
21 CFR 11, especially audit trails and limited system access.

For each worksheet, define:

• Which users may enter data into the sheet.

• Which cells accept data and the format of the entered data.

• Which formulas or calculations exist on the sheet.

• Which cells represent the output or final calculation.
For each chart, define:

• Which data sets are used to create the chart.

• Critical properties including the title, axis labels and units.

Design Specification
After defining requirements, create the design specification. The
design specification describes how requirements outlined in the
requirement specification have been implemented. This document
should include enough information so that a developer can create
the entire software project based on the information contained
within this document and from reading the requirements
specification.

Separate each worksheet into four sections: Inputs, Processing,
Outputs and Security.

Inputs
Document cells where users enter or update data. In an
automated system, you can also define the source, the input data
or instructions. If any validation rules are used to enforce proper
data entry, these should be documented here as well.

Processing
Document formulas that are used on the worksheet. Any custom
macros or VBA code are also documented here.

The majority of errors that we find when validating
spreadsheets are in the formulas. The best technique to
identify errors is to define each formula in the design
specification using the actual names of the variables represented
as input cells.

For example, it may be easy to document that the range of cells
F10:F20 contains the formula =(A10*C5)/(D5*B10).
However, it is difficult to verify if this formula is correct. Instead,
write the formula out like this:

Cell C5: Volume (V)
Cell D5: Ideal Gas Constant (R)
Cells A10:A20 Pressure (P)
Cells B10:B20 Temperature (T)
Cells F10:F20 Final Result (moles of gas, n)
F10=(A10*C5)/(D5*B10) n = (PV)/(RT)

Writing out formulas in this manner is the easiest and most
effective way to detect errors in formulas.
In addition, macros and VBA code used in the spreadsheet must
be documented. Copy the code into the design specification and
annotate as needed to describe the purpose of each function.
Note: If you have good coding standards and user proper
headers and comments in your code, this step may be
already be done for you.

Outputs
Outputs usually fall into three main categories:

• The cell or range of cells that contain the final result of all
previous calculations

• Charts – many times these are printed and saved with
external reports

• Data that is copied into a final result sheet or exported to a
separate file or database.

Security
This section can be a short statement, e.g. “All non-input cells
must be locked to prevent changes.” You can also include
additional security settings if you are using custom code or a third
party add-on to implement multiple levels of security to control
who can edit certain cells, run a macro or function, etc.

Test Protocols
The Test Protocol demonstrates that spreadsheet requirements
were properly implemented according to the design specifications
and function as expected.
Installation Qualification (IQ) testing is usually limited to verifying
and documenting the file location and the version of the
spreadsheet , MS Excel and any add-ons (third party apps, etc.).
Operational Qualification (OQ) testing verifies requirements,
primarily formulas, macros, and testing the security of each sheet
to verify that all non-input cells are locked to prevent changes.
Performance Qualification (PQ) testing verifies functionality under
live conditions. Excluding certain situations (for example, where
the spreadsheet is used to identify an unknown sample), the PQ
can be omitted if allowed and justified in the Spreadsheet
Validation Master Plan.
The IQ, OQ and PQ may be combined as needed.
To start generating test cases, break testing down into Inputs,
Processing, and Outputs. Security testing is easier to test in
separate test cases.

Input Testing
Examples of the types of test cases to write for input testing:

• What data can be entered into each input cell?

• Are validation rules being enforced?

www.OfniSystems.com
info@OfniSystems.com

808 Salem Woods Dr. Suite 103
Raleigh NC 27615-3345

Office: 919.844.2494
FAX: 919.869.1990

Process & Output Testing
These are usually easier to combine when writing test cases.
FOCUS ON TESTING THE FORMULAS! There are several
methods for verifying and testing formulas.

• Visual inspection of each formula or range of formulas

• Verification of each numerical calculation using a calculator.

• Testing for consistent formulas in a certain range.

• Put the same value in all input cells to verify that all formulas
report the same output value.

• Alter an input cell to verify that the calculated value and the
final result changes as expected.

• For critical applications, continue altering each subsequent
input cell to verify that all formulas report the same value. For
less critical sheets, you may try testing the first, last and a
random third input cell in the middle to spot-test formulas.

• Continue testing until all input cells have had data entered or
changed, and the results verified. The key point is to look for
formulas that are incorrect or charts that are not using the
correct or complete set of data, or are pointing to the wrong
columns of data.

• Test Macros by entering a range of data and comparing the
results with a hand calculator. Visual inspection is often
adequate to verify that the function performed as expected.

• Charts can be tested by a combination of visual inspection
and verification of the properties, including the dataset used
as the basis for the charts.

Security Testing
The type and amount of security testing needed spreadsheets is
largely based on how security has been implemented. At a bare
minimum, you should test that users are limited to entering data
into the defined input cells only, and that users do not have the
ability to alter any other part of the spreadsheet. Failure to do this
compromises the integrity of the validation effort and the resulting
data or information generated by the workbook.

Conclusion
The methodology presented here will result in a User/Functional
Requirements Specification, a Design Specification, and a Test
Protocol ready for approval and execution. Deviations identified
during testing are resolved according to existing validation
practices, and a summary report which shows that all the activities
specified in the Validation Master Plan or SOP can be generated.

About the Author
Tyson Mew is President of Ofni Systems, a regulatory compliance
consulting, software and validation firm for FDA-regulated
companies. Ofni Systems is the creator of ExcelSafe, which
provides MS Excel spreadsheets with all technological tools for
compliance with 21 CFR 11, including audit trails, electronic
signatures, passwords and user-level security. Ofni Systems is
also the creator of the FastVal Validation Document Generator,
which automates the generation and execution of validation
documents, including for spreadsheet validation. For more
information, visit www.OfniSystems.com.

